Distinct cortical networks for the detection and identification of human body
نویسندگان
چکیده
In the human brain information about bodies and faces is processed in specialized cortical regions named EBA and FBA (extrastriate and fusiform body area) and OFA and FFA (occipital and fusiform face area), respectively. Here we investigate with functional magnetic resonance imaging (fMRI) the cortical areas responsible for the identification of individual bodies and the distinction between 'self' and 'others'. To this end we presented subjects with images of unfamiliar and familiar bodies and their own body. We identified separate coactivation networks for body-detection (processing body related information), body-identification (processing of information relating to individual bodies) and self-identification (distinction of self from others). Body detection involves the EBA in both hemispheres, and in the right hemisphere: the FBA and areas in the IPL (inferior parietal lobe). Body identification involves areas in the inferior frontal gyrus (IFG) of both hemispheres and in the right hemisphere areas in the medial frontal gyrus (MFG), in the cingulate gyrus (CG), in the central (CS) and the post-central sulcus (PCS), in the inferior parietal lobe (IPL) and the FBA. When the recognition of one's own body is contrasted to the identification of familiar bodies, differential activation is observed in areas of the inferior parietal lobe (IPL) and inferior parietal sulcus (IPS) of the right hemisphere, and in the posterior orbital gyrus (pOrbG) and in the lateral occipital gyrus (LOG) of the left hemisphere. Thus, identification of individual bodies and self-other distinction involve in addition to the classical occipito-parietal network a parieto-frontal network. Interestingly, the EBA shows no differential activation for distinctions between familiar or unfamiliar bodies or recognition of one's own body.
منابع مشابه
Parallel processing in human audition and post-lesion plasticity
Recent activation and electrophysiological studies have demonstrated that sound recognition and localization are processed in two distinct cortical networks that are each present in both hemispheres. Sound recognition and/or localization may be, however, disrupted by purely unilateral damage, suggesting that processing within one hemisphere may not be sufficient or may be disturbed by the contr...
متن کاملParallel processing in human audition and post-lesion plasticity
Recent activation and electrophysiological studies have demonstrated that sound recognition and localization are processed in two distinct cortical networks that are each present in both hemispheres. Sound recognition and/or localization may be, however, disrupted by purely unilateral damage, suggesting that processing within one hemisphere may not be sufficient or may be disturbed by the contr...
متن کاملA Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks
Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...
متن کاملPeople Re-identification in Non-overlapping Field-of-views using Cumulative Brightness Transform Function and Body Segments in Different Color Spaces
Non-overlapping field-of-view (FOV) cameras are used in surveillance system to cover a wider area. Tracking in such systems is generally performed in two distinct steps. In the first step, people are identified and tracked in the FOV of a single camera. In the second step, re-identification of the people is carried out to track them in the whole area under surveillance. Various conventional fea...
متن کاملA Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks
Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 45 4 شماره
صفحات -
تاریخ انتشار 2009